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SUMMARY 

A scheme for the numerical solution of the two-dimensional (2D) Euler equations on unstructured triangular 
meshes has been developed. The basic first-order scheme is a cell-centred upwind finite-volume scheme 
utilizing Roe’s approximate Riemann solver. To obtain second-order accuracy, a new gradient based on the 
weighted average of Barth and Jespersen’s three-point support gradient model is used to reconstruct the cell 
interface values. Characteristic variables in the direction of local pressure gradient are used in the limiter to 
minimize the numerical oscillation around solution discontinuities. An Approximate LU (ALU) factoriz- 
ation scheme originally developed for structured grid methods is adopted for implicit time integration and 
shows good convergence characteristics in the test. To eliminate the data dependency which prohibits 
vectorization in the inversion process, a black-gray-white colouring and numbering technique on unstruc- 
tured triangular meshes is developed for the ALU factorization scheme. This results in a high degree of 
vectorization of the final code. Numerical experiments on transonic Ringleb flow, transonic channel flow 
with circular bump, supersonic shock reflection flow and subsonic flow over multielement aerofoils are 
calculated to validate the methodology. 
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1. INTRODUCTION 

Algorithms for solving the Euler equations on structured grids are widespread in the literature. 
One of the difficulties encountered by the structured grid method is the generation of a suitable 
structured mesh over complex geometries. The multizone methodology which divides the domain 
into separate and simple zones is effective for two-dimensional (2D) problems, however, still 
requires an enormous grid generation effort for 3D complex geometries. Recently attention has 
shifted to the solution of the Euler equations on unstructured grids which, in principle, has no 
difficulty in treating the geometrical singularities and irregularities. This shift is largely due to 
impressive results reported by Jameson and Mavriplis,’ - who constructed cell-centred and 
cell-vertexed schemes based on continuous piecewise linear elements with added artificial viscos- 
ity. Desideri and Dervieux4 and Rostand and Stoufflet’ have also shown results of upwind vertex 
approximations using Osher’s flux formulation. Barth and Jespersed have developed a discon- 
tinuous piecewise linear reconstruction and, later, Barth and Frederickson’ have developed 
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a high-order (k-exact) reconstruction with high-order Gaussian quadratures for the flux evalu- 
ations. However, the k-exact reconstruction model is rather complicated due to the need of 
satisfying the conservation of the mean, and, furthermore, the rule of selecting the optimal set of 
cells to support the k-exact reconstruction is still unresolved. As for the time integration, 
Whitaker et al.' have compared many explicit and implicit time integration methods, including 
a direct LU decomposition method with the reverse Cuthill-Mcgee renumbering technique to 
reduce the bandwidth of the implicit operator. In general, implicit methods on unstructured grids 
are usually difficult to vectorize and inefficient on vector computers due to the high degree of data 
dependency. An efficient method for the inversion of implicit operator is still to be sought. 

In the present paper, efforts have been made to improve both the accuracy and efficiency of the 
Euler solution algorithm on unstructured triangular grids. The basic first-order scheme is 
a cell-centred upwind scheme on triangular mesh utilizing Roe's approximate Riemann solver. To 
obtain second-order accuracy, the weighted average of Barth and Jespersen's three-point support 
linear gradient is used to reconstruct the Riemann states at the cell interface. Characteristic 
variables in the direction of local pressure gradient are introduced to minimize the numerical 
oscillation around solution discontinuities. An implicit Approximate LU (ALU) factorization 
scheme, originally developed on structured meshes, is adopted for triangular meshes, which, in 
principle, has similar convergence characteristics as that on structured meshes. To facilitate an 
effective vectorization of the ALU scheme, a colored black-gray-white (BGW) numbering 
technique is developed and implemented. This BGW numbering sorts the mesh cells into 
independent sets and effectively eliminates the data dependency in the inversion process. This 
results in a high degree of vectorization of the final code. Numerical examples of transonic 
Ringleb flow, transonic channel flow with circular bump, supersonic shock reflection flow and 
subsonic flows over multielement aerofoils are calculated to validate the methodology. 

2. MATHEMATICAL MODEL 

The 2D Euler equations without body force and heat source can be written in integral form as 

with 

and 

f= 

where Q is the domain of interest and S is the boundary surrounding R, B is the unit normal of S in 
outward direction, Q represents the vector of conserved variables and F the vector of flux 
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functions. The pressure is obtained by the equation of state: 

where y is the ratio of specific heats. In the above equations, the density is non-dimensionalized by 
the free-stream density pm,  velocities u and u by free-stream sound speed urn, and energy per unit 
volume and pressure by p , u : .  

2.1. First-order scheme 

The flow field is discretized using triangular cells to form an unstructured mesh. The average of 
conserved variables is stored at the centre of each triangular cell. The edges of each cell define the 
faces of the triangular control volume. For each triangular control volume, equation ( 1 )  can be 
rewritten as 

a Q i  vi - = - $aci F * A dS, 
at (3) 

where Qi now represents the averaged conserved variables of cell i, aC, and vi denote the 
boundary cell face and the volume of cell i, respectively. To evaluate the right-hand side of 
equation (3), the flux vectors over each face of Xi are summed, resulting in the discrete form of 
flux integral as 

$aci F * A dS = F i ,  AS j ,  
j = k ( i )  

(4) 

where Fi, is the numerical flux at each cell face, ASj is the length of each cell face, and k ( i )  is a list 
of neighbouring cells of cell i. For a cell-centred scheme, the number of cell faces of each triangular 
cell is always three. To evaluate the numerical flux Fi, j ,  Roe’sg flux difference scheme is applied 
locally at each cell face, assuming 1D Riemann problem in the normal direction. Two discrete 
Riemann states separated by the cell interface are first interpolated using the cell-centre values. 
For a first-order scheme, a piecewise constant distribution is assumed: 

Q < j = Q i ,  Q { j = Q j ,  ( 5 )  

where + and - superscripts indicate right and left Riemann states in the counterclockwise sense. 
The numerical flux Fi,  is obtained by 

(6) F i ,  j = a C F ( Q { j )  + f ’ ( Q l j ) -  I ARoe I ( Q l j -  Q i , j ) l ,  

where ARoe is the flux Jacobian evaluated using Roe’s average fluid states. The absolute value 
symbols indicate that the absolute value of the eigenvalues were used to evaluate ARoe. 

2.2. High-order schemes 

To construct high-order schemes, a linear- or higher-order distribution of flow variables over 
each cell is assumed to replace the piecewise constant cell distribution. The left and right Riemann 
states of each cell face are reconstructed using the linear- or high-order assumption, from which 
the numerical fluxes are computed. A piecewise linear reconstruction of the cell A can be 
represented by 

Q ( x ,  Y ) =  Q A  + V Q A  * ry (7) 
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where r is the vector from the cell centre A to any point (x, y )  in the cell, Q A  is the cell-centre value 
of cell A, and V Q A  represents the gradient vector of cell A evaluated using the cell-centre values. It 
is the evaluation of V Q A  which distinguishes various schemes. 

By treating equation (7) as the first-order Taylor expansion of Q ( x , y ) ,  it is evident that 
a first-order accurate V Q A  can be solved by three known point values of Q. However, the three 
known points must not be collinear, that is, they must form a triangie. This is equivalent to 
assuming that a constant V Q A  exists in the contour enclosed by the three known points, and 
Gauss theorem can be applied to evaluate the gradient as 

where du is the integration path connecting three known points and an is the area contained in the 
path. It is well known that Gauss theorem can be applied to arbitrary polygon contours, but the 
accuracy of the gradient estimation decreases as more points are brought in from further away. 
Only the result of triangular contour is equivalent to a Taylor expansion. 

To obtain the gradient of cell A in Figure 1, it is reasonable to utilize the information at A itself 
and its neighbouring cells B, C and D. Among four possible integration path connecting three cell 
centres, Barth and Jespersen' suggest the integration path connecting the neighbouring cell 
centres B, C and D. Note that in extreme cases where highly stretched and skewed triangles are 
formed, this integration path may degenerate into a straight line. To avoid this singularity, Barth 
and Jespersen further suggested that the set of all cell centres neighbouring to and sharing 
a common vertex with cell A be connected to form the integration path. In this paper, the former 
path is taken under the assumption that proper cautions have been taken in the grid generation 
effort to detect and eliminate singular cells. 

Among many possible candidates examined in Reference 10, a simple and accurate gradient 
estimation based on the weighted average of Barth and Jespersen's three-point model is used in 
this paper: 

vQYd= (VQA + WBVQB + mcVQc + o,VQD)/2, 

TAD X ~ D B  TAB X ~ B C  , OD=-, 
rAC rCD 

rBC rCD rBC rCD rBC rCD 
WB = 3 wc= (9) 

Figure 1. .: Stencil support for unmodified gradient VQA; x: stencil support for modified gradient VQXa 
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where VQB, ,-, are Barth and Jespersen’s gradient of cell B, C and D, respectively, rAC is the 
distance vector from cell centres A to C and other r’s are defined similarly. Note that the sum of 
the area weighting factors oB, c, is always one, regardless of whether centre A is inside the path 
BCD or not. This results a 10-point gradient model, as shown in Figure 1. There are two 
advantages of using this modified gradient. First, on a ‘regular’ triangular mesh made of 
equilateral triangles, it can be proven that the modified gradient is of the order of O(Ax2, Ay2). 
Second, the process of area weighting usually reduces the unevenness in the computed gradients, 
and the stability of the overall scheme may be enhanced. This weighted averaging process of 
equation (9) can be easily extended to 3D tetrahedral meshes. Results of 3D tests will be reported 
in another paper. 

3. CHARACTERISTIC LIMITER 

The reconstruction mentioned above can be applied to conserved variables or primitive variables. 
Limiters of some sort are often applied to the interpolated quantities to minimize the numerical 
oscillation around solution discontinuities. It is known from the experience of structured grid 
methods’’ that when flow discontinuities are present, the use of characteristic variables in the 
limiting process can in general produce better results than using primitive or conserved variables. 
On structured grid methods, the reconstruction is generally quasi-one-dimensional along each 
co-ordinate direction. Thus, it is a standard practice to use cell-face normals to define the 
characteristic direction along which the characteristic variables are defined. For the proposed 
scheme on triangular meshes, however, the reconstruction is truly two-dimensional and difficulty 
arises in defining the characteristic directions for each cell. 

Here, it is chosen to define a unified characteristic direction for the three cell faces of each cell. 
In order to produce the best limiting result, the chosen direction should be aligned with the 
direction of pertinent solution gradient in the flow field, or normal to the pertinent solution 
discontinuity. For example, the direction of pressure gradient is a natural indication of the shock. 
Similarly, the direction of density gradient can capture a contact surface, and the direction of 
tangential velocity gradient is proper for a slip line. One may try to use a single gradient, e.g. 
entropy gradient, to indicate various possible discontinuities in the flow field. But entropy jump is 
normally small compared with other jumps across shocks. In the present paper, local pressure 
gradient is chosen to demonstrate the use of characteristic limiting when shock is present in the 
flow field. In regions of small pressure gradient, the direction of maximum solution gradient of 
primitive variables is used instead. 

The limited version of the reconstruction of cell A can be written as 

Q(x, Y )= QA + R,@A (LpvQhd * 11, @A E LO, 11, (10) 

where @A is a chosen limiter for cell A, L, and R, are the left and right eigenvectors of the flux 
Jacobian evaluated at the cell centre of cell A using the direction of local pressure gradient. If 
individual cell-face normals were used instead of a unified characteristic direction, the L, and R, 
in equation (10) would be different for different cell faces. A popular limiter following Barth and 
Jespersen6 can be written as 

@A,=min(@Aj), j = k ( i ) ,  
where @A, is computed at each face j of cell A as 

A WA j = Lp ( Q j - Q A 1, 
b wpn =mill { A WAB, A WAC, A WAD, o}, 
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min(1, AWY/AWAj) if AWAj>O, 

@A(AWAj)= m i n ( l , A W ~ / A W A j )  if AWAj<O, 
1 1  if AWAjz0, 

where Q j  is the unlimited cell-face value of cell A obtained by V Q h d . r .  
Note that the gradient vector VQZd can be evaluated using either primitive variables or 

conserved variables. Thc corresponding L, is then applied to obtain characteristic variables in 
difference form before limiting. The limiter (DA is applied to characteristic variables after which the 
corresponding R ,  is used to recover the primitive or conserved variables. It has been our 
experience that whether the primitive or conserved variables are being reconstructed has very 
minor effect on the final accuracy of the solution. Since the primitive variables have a much 
simpler eigenvector than that of the conserved variables, it is chosen to use primitive variables in 
the reconstruction process. 

4. IMPLICIT TIME INTEGRATION 

The semidiscrete form of equation (3) can be written as 

-- - - 1 Fi3 jASj= - R(Q) .  
3Qi vi 

at j = k ( i )  

For implicit time integration, the Euler implicit method is chosen: 

where AQn=Qn+'-Q" and At is the time increment. This equation can be linearized about 
a known state Q" to obtain 

Y+R(Q") =RHS, 1 (14) 

where AQs = Q"' - Q" and I is the identity matrix. Here 's' is a subiteration index which can be 
subiterated to obtain a better approximation Q s + l  to Q"". 

To simplify the inversion process of equation (14), only a first-order spatial accurate scheme is 
used on the left-hand side, while the full high-order accuracy is kept on the right-hand side. This 
simplification will not alter the time and spatial accuracy of the solution when the subiteration in 
's' converges. The fully discretized equation can be written in matrix form as 

(D+ L+ U)AQ'= RHS, (1 5 )  
where D is a block diagonal matrix, L is a block lower triangular matrix with zero diagonal 
elements, and U is a block upper triangular matrix with zero diagonal elements. For the 2D Euler 
equations, the elements of L, D and U are all 4 x 4 matrices. 

The direct inversion of equation (15) is still prohibited due to the need for huge computer 
resources. This is particularly true for unstructured grid methods since the construction of L and 
U is unstructured and sparse. The choice of relaxation method for solving equation (15) is also 
limited on unstructured meshes, because the advantage of a structured ordering of mesh cells is 
lost. For example, the popular AD1 scheme (approximate factorization) or line Gauss-Seidel 
scheme is not directly applicable on unstructured meshes. Thus, it is desirable to develop 
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a relaxation method using unstructured random ordering, yet still maintaining a similar conver- 
gence characteristic as that on structured meshes. 

In the present paper, an ALU scheme originally developed for structured grid method'* is 
adopted to factorize the left-hand side of equation (15) as 

( D  + L ) D  - ' ( D  + U ) A Q ~ =  RHS. (16) 
The factorization error of equation (16) is LD- '  UAQ'. The three sweeps of the inversion process 
of equation (16) are: 

lower sweep: ( D  + L ) A Q *  =RHS, 

diagonal sweep: D -  'AQ** =AQ*,  

upper sweep: ( D +  U)AQ'=AQ**.  

Since only first-order upwind method is used on the left-hand side, the lower and upper triangular 
matrices of the above steps are diagonally dominant. The inversion processes are simple because 
they require only matrix multiplications and additions and 4 x 4 matrix inversions. Note that this 
ALU factorization scheme is applicable to both structured and unstructured meshes, and to 2D 
as well as 3D problems. This is because the operator split of the left-hand side into L, D and 
U requires no prior knowledge of dimensionality or mesh structure. At least in principle, the 
convergence of the ALU scheme depends only on the sequence of information propagation of 
boundary conditions. Hence, with a proper handling of boundary points, it is expected that the 
convergence rate of the ALU scheme should not deteriorate when applied to unstructured 
schemes. 

To make the ALU scheme fully vectorizable, a black-gray-white (BGW) colouring and 
numbering technique similar to the checkboard colouring on structured grid is developed and 
implemented. The computational cells are divided into three sets of different colours, namely, 
black, gray and white. The rule of colouring is that no two adjacent cells have the same colour. 
Note that this rule can be followed for most part of the computational domain by using only two 
colours, say black and white. Only for a small portion of the computational domain, gray cells are 
needed to separate the black and white cells. On a 'regular' triangular mesh, no gray cell is needed 
at all. The fully discretized equations with BGW colouring can be written as 

where subscripts B, G and W indicate th? cell colour under consideration and superscripts B, 
G and W indicate the neighbouring cell colours. The three sweeps of the ALU scheme are now as 
follows. 

Lower sweep: 

for B: 

for G: AQT,=DG1[RHSG-Lt(AQB*)], 

for W AQ&=DG'[RHSw-Lk(AQB*)-L$(AQE)]. 

AQg = DB1 RHSB, 

Diagonal sweep: 

for B, G and W: AQ** = DAQ*. 
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Upper sweep: 

for W: AQ~=D;'AQ;*, 

for G: AQ&=D;l[AQX*-Ug(AQ&)], 

for B: AQ$=Di'[AQB**- U~(AQ",- -U~(A&&)] .  

Note that since only a first-order spatial accurate scheme is used on the left-hand side, this BGW 
colouring has completely eliminated the data dependency and allows a full vectorization of the 
inversion process. The cost of this high degree of vectorization may be some extra memory for the 
colour management, and more seriously, a change in the convergence characteristics because of 
the change in the sequence of information propagation of boundary conditions. In the following 
numerical experiments, the actual benefit of this BGW colouring on vector computers will be 
investigated. 

For comparison, the explicit four-stage Runge-Kutta method (RK4), and the implicit point 
Gauss-Seidel method (PGS) used in Reference 8 will also be described briefly. The RK4 method 
can be written without subscripts i a n d j  as 

At At 
V Y 

Q"" =&"-a4 - R(Q(3)), Q(3)=Q"-a3 - R(Q(')), 

where n is the index in time, At is the time increment and the coefficients are 

These coefficients have been experimentally determined to accelerate convergence to steady state 
in upwind structured code." In addition, the convergence of RK4 method to the steady state is 
also accelerated by the use of implicit residual smoothing and local time stepping.13 To solve 
equation (15) approximately, the implicit PGS method neglects the U part of the implicit side to 
obtain 

(D+L)AQ"=RHS.  (19) 

The inversion of this equation is simple and straightforward. 

5. NUMERICAL TESTS 

Various numerical tests have been performed to validate and evaluate the schemes outlined 
above. These include tests for (1) the accuracy of the solution algorithms, (2) the effects of the 
limiter and (3)  the efficiency of the time integration methods. Finally, the flow over a four-element 
aerofoil is computed to demonstrate the capability of the scheme to handle complex geometries. 
For most of the tests, characteristic boundary  condition^'^ are used for the far field, and tangency 
conditions are used for the solid bodies. Exact boundary conditions are used whenever 
applicable. 

5.1. The accuracy of the solution algorithm 

The numerical solution of the Ringleb flow is computed and compared with analytical 
solution.' The two Riemann states at the cell interface are computed using various reconstruc- 
tion models without limiting. Results of three types of reconstruction models are compared: 
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(1) Type 1 which uses the constant distribution of equation (5), (2) Type 2 which is Barth and 
Jespersen’s three-point linear model of equation (8), and (3) Type 3 which is the proposed 
10-point linear model of equation (9). For the sake of comparison, both first-order and second- 
order Gauss quadrature integrals are used in the flux evaluation. A sequence of three meshes are 
used for grid refinement: coarse (374 cells), medium (711 cells) and fine (1020 cells). The coarse grid 
and the density contours of the exact solution are shown in Figures 2 and 3. 

Figure 2. Coarse grid for Ringleb flow problem, 374 cells 

Figure 3. Exact density contours of Ringleb flow problem 
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The L2 norm of the solution error is defined as 

where Qe is the exact solution, Qn is the numerical solution and N is the number of cells used. 
Since a curved boundary will introduce a truncation error from modelling the boundary by 
a series of straight-line segments, all cells adjacent to boundary surfaces are not included in the L2 
calculation. This exclusion of boundary cells will make the order estimation more conservative in 
general. Figure 4 and Table I show the L2 norm of the solution errors with grid refinement. The 
horizontal axis is the reciprocal of square root of the total cell number, which is equivalent to the 
grid spacing Ax and Ay on structured meshes. Another parameter N G  is the order of Gauss 
quadrature integral used in the flux evaluation. Table I(a) lists the numerical data of Figure 4. 
Table I(b) shows the data fitting of Figure 4 by power curves y = axb, where b is equivalent to the 
order of the solution in Ax and Ay. It is seen that Types 2 and 3 are all second-order schemes 
with decreasing L2 norms. The second-order Gauss quadrature is effective for Type 3, but not for 
Type 2. This indicates that the accuracy of Type-2 gradient has limited the accuracy of the 
solution algorithm. 

A further test is done on a mesh with poor quality as shown in Figure 5. The error norms 
computed on this poor mesh are recorded in Table 11. It is evident that the Type-3 scheme is more 
accurate than the Type-2 scheme on this poor mesh. Again, the second-order Gauss quadrature is 
effective for Type 3, but not for Type 2. It can be concluded that the modified linear gradient of 
equation (9) is effective in increasing the accuracy of the original Barth and Jespersen’s scheme. 

TypelcO.1 
0 Type2 NG=l 

mo-4 I I 

rldz 
l/SQRT(CELL NUMBER) 

Figure 4. L2 error of density versus grid refinement for Ringleb flow problem 
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Table I(a). L 2  norm of Ringleb flow on Euler solver 

L 2  norm 

Mesh Method type NG=1 NG=2 

Coarse grid 
374 cells 

Medium grid 
553 cells 

Fine grid 
1020 cells 

3.19 x l o - *  
1-99 1 0 - 3  2.03 x 10-3 
1 . 2 6 ~  9.95 x 10-4 

1.36 x 10-3 1-31 x 10-3 

7.78 10-4 8.02 10-4 
4.85 x 10-4 3.75 10-4 

2.68 x 

8.50 10-4 6.25 x 

2.07 x 

Table I(b). Curve fitting of Figure 4 by power curve y = a x b  

Method type N G  a b 

1 0.044 0.86 
1 0.488 1.86 
2 0.493 1.86 
1 0.29 1 1.85 
2 0.285 1.92 

1089 

Figure 5. Poor grid for Ringleb flow problem; 221 cells 
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Table 11. L2 norm of Ringleb flow on Euler solver applied to poor grid 
in Figure 5 

L2 norm 

Mesh Method N G  = 1 N G  = 2 

1 409 x lo-'  
2 8.54 10-3 9.54 x 10-3 
3 3.25 x 10-3 2 4 9  x 1 0 - 3  

Figure 6 .  Mesh and pressure contours for shock reflection problem: 2 2 3 2  cells. M L  = 2 9 .  0 ~ ~ 29 

5.2. The qflfcfs of limiter 

To examine the effects of the Characteristic limiter? an M ,  = 2 ~ 9  shock reflection problem is 
computed with the limiter turned on. The shock angle is -29' to the horizontal. A mesh of 2232 
cells on a rectangular region of length 4 and hcight 1.2 and the computed pressure contours using 
Type-3 reconstruction are shown together in Figure 6. Note that the captured shock width is 
thicker before the reflection on the wall. This is due to the fact that the mesh cells after reflection 
align better with the reflected shock. 

As mentioned in Section 3, the limiter can be applied to conserved variables, primitive 
variables, or characteristic variables. Figurcs 7 and 8 show the convergence history of density of 
Type-2 and Type-3 schemes with thc limiter applied to different variables. It is clear that Type-3 
scheme converges better and faster than l'ypc-2 scheme in general, and the characteristic limiter 
results in the best convergence for both schemes. The computed pressure profiles along the wall 
using Type-3 scheme are shown in Figure 9. The first-order result is also shown for comparison. I t  
is seen that the characteristic limiter yields the least numerical oscillation. Results using Type-2 
scheme are similar and not shown here. 

5.3. The eficiency of time integration methods 

The steady state of an M ,  =0675 transonic flow in a 2D channel with a 10% circular bump is 
computed using various time integration methods, namely, RK1, RK4, PGS, A L U  and A L U  with 
RGW colouring. A mesh of 1071 cells used in the computation is shown in Figure 10. The solution 
algorithms investigated are the first-order scheme using Type-1 reconstruction and the second- 
order scheme using Type-3 reconstruction with characteristic limiter. The computed surface 
pressures are compared with the result obtained by a structured upwind TVD method of 
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5.0 

loo Type2 Primitive 

lo-' 

0 

I I I I 

0.0 125.0 250.0 375.0 500.0 E 

ITERATION NUMBER 

Figure 7. L2 residual of density versus iteration count for shock reflection problem; Type 2: 2232 cells, M,=2 .9 ,  
p= -29" 

I I I 1 10-61 

ITERATION NUMBER 
Figure 8. L2 residual of density versus iteration count for shock reflection problem; Type 3: 2232 cells, M,=2 .9 ,  

B =  -29" 

ChakravarthyI6 on a 64 x 22 mesh in Figure 11. The second-order results agree well, except for 
some slight differences behind the shock. The convergence of the L2 residual of density versus 
iteration number and CPU time are plotted in Figures 12 and 13 for the first-order scheme, and in 
Figures 14 and 15 for the second-order scheme. 
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w 
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3 
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4.5 

3.5 

2.5 

1.5 

0.5' 

3.5 
I 

(b) 

2.5 

1.5 

0.5 

4.5 

3.5 

2.5 

1.5 

0.5 '-7 
0.0 1.0 2.0 3.0 4.0 

X 

Figure 9. Pressure distribution on the lower wall for shock reflection problem: 2232 cells, M, =2.9. b= -29". Lines: 
exact solution, +: Type-1 solution without limiting, 0: Type-3 solution with limiting on (a) primitive variables, 

(b) conserved variables and (c) characteristic variables 

Figure 10. Mesh for transonic channel flow with 10% circular bump: 1071 cells, M,=0.675 

For the first-order results, the ALU method has the least iteration number, while the 
ALU+ BGW method has the least CPU time on Alliant FX/80 single vector processor. The CPU 
time per iteration per cell is 1.13 x s for the ALU method and 0.63 x s for the 
ALU + BGW method. As mentioned before, the BGW colouring changes the sequence of 
information propagation, and hence slows down the convergence of the method in general. On 
the other hand, the BGW colouring allows the full vec-torization of the inversion process, which in 
this case has saved as much as 45% of the CPU time per iteration. Of course, the actual saving 
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Chekrsvsrthy 
A Type1 

1.0 

1093 

-1.0 1 I I I I I 

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 
X 

Figure 1 1 .  Surface Cp distribution for transonic channel flow with 10% circular bump: 1071 cells, M, =0675.  Line: 
Chakravarthy’s scheme, symbol computed 

J 

0 
a 3 

0.0 250.0 500.0 750.0 1000.0 1250.0 
ITERATION NUMBER 

Figure 12. L2 residual of density versus iteration count for transonic channel flow with 10% circular bump; Type 1: 1071 
cells, M, =0.675 

may depend on the programming technique as well as the computer hardware. The RKl method 
performed well in terms of CPU time, since it is a single-stage method and fully vectorizable. The 
RK4 method is the most unstable scheme probably because of a CFL number too large. The PGS 
method is the most expensive one in terms of CPU time. 

As for the second-order results, RK1 fails to converge at all and PGS is slow to converge. The 
ALU method has the best convergence in terms of both iteration count and CPU time. The CPU 
time per iteration per cell is 1.37 x s for the s for the ALU method and 0.83 x 
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5.0 

Figure 13. LZ residual or density versus CPU time(s) for transonic channel flow with 10% circular bump; Type 1: 1071 
cells, M, =0675 
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Figure 14. L2 residual of density versus iteration count for transonic channel flow with 10% circular bump; Type 3 1071 
cells, M ,  =0675 
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Figure 15. L2 residual of density versus CPU time (s) for transonic channel flow with 10% circular bump; Type 3: 1071 
cells, A4, = 0.675 

ALU + BGW method. However, the decrease in the convergence rate due to BGW colouring is 
much more significant than that in the first-order case. Hence, although it is fully vectorized by 
using BGW colouring, the ALU + BGW method is still slower than the ALU method in terms of 
CPU time. On a computer of higher vector performance than Alliant FX/80, the actual saving 
due to BGW colouring may be increased. Nevertheless, it is highly desirable to develop a method 
that could adopt the BGW colouring technique without slowing down the convergence rate. 

5.4. Numerical validation involving complex geometry 

The numerical test involving complex geometries reported here is the subsonic flow over 
a four-element aerofoil defined in Suddh00.l~ A mesh with 7160 cells used in the test is shown in 
Figure 16. The surface pressure coefficient of an M ,  = 0 3  solution using Type-3 reconstruction 
without limiter is compared with the incompressible solution in Figure 17. The comparison is 
reasonably accurate except for some local area of upper surfaces where flow expansion occurs. 
The differences may be attributed to the compressibility effect. The convergence of the L2 residual 
of density is shown in Figure 18. For the scheme using Type-3 reconstruction, the ALU method 
converges at a satisfactory rate, i.e. about 140 steps per order of magnitude drop in L2 residual. 
The BGW colouring has slowed down the convergence of the ALU method as expected. On 
Alliant FXjSO, the CPU time per iteration per cell is 1.21 x s for the ALU method and 
0.80 x lop3 s for the ALU + BGW method. As for the Type-2 scheme, the convergence is slow 
even using the ALU method under the same conditions as for the Type-3 scheme, i.e. the same 
CFL number (about lo), initial and boundary conditions, etc. There are noticeable and frequent 
oscillations in the convergence of the Type-2 scheme, in contrast to that of the Type-3 scheme. 
This indicates that the averaging process of equation (9) is effective in stabilizing the overall 
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Figure 16. Mesh for subsonic flow over four-element aerofoils; 7160 cells: (a) full computational domain, (b) aerofoil 
region 

scheme, and hence in increasing the convergence rate. It can be concluded in this test that the 
Type-3 reconstruction together with the ALU time integration constitute an accurate and stable 
scheme which can effectively handle the flow problem with complex geometries. 

6. CONCLUSIONS. 

An accurate, stable and efficient upwind finite-volume scheme for the Euler solution on 2D 
unstructured triangular meshes has been developed and tested. By taking the weighted average of 
Barth and Jespersen’s three-point support gradient, a new linear gradient vector is introduced for 
the reconstruction model. The new gradient has a 10-point stencil support and is second-order 
accurate on a ‘regular’ triangular mesh. This gives an accurate and stable second-order Euler 
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Figure 17. Surface Cp distribution for subsonic flow over four-element airfoils; M ,  =0.3. line: incompressible solution; 
symbols: computed 
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Figure 18. L2 residual of density versus iteration count for subsonic flow over four-element aerofoils; M, = 0 3  

scheme in general. Characteristic variables in the direction of local pressure gradient are defined 
and used in the limiter, which is shown to be effective in eliminating the numerical oscillation 
around solution discontinuities. An ALU is developed for the implicit time integration and shows 
good convergence characteristics in all the numerical tests performed. To vectorize the scheme 
fully a BGW colouring technique is developed and implemented for the vector computer. 
However, this BGW colouring changes the sequence of information propagation, and hence 
slows down the convergence of the time integration. The actual saving of CPU time due to this 
BGW colouring is problem and computer dependent. Finally, the overall scheme is applied 
successfully to calculate the low subsonic flow over a complex four-element aerofoil. 
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